
Realbasic: Canvas Tutorial Lesson 10 -
Perspective

Last week I had a question on how to do perspective on images in RealBasic. As the answer is not that easy,
I decided to make a blog post on this.

First, let's look at what actually happens when a rectangle is put into perspective. We have to map the four
corners of the picture to four points in the '3D' space as shown in this illustration:

This gives us a framework to map every other point in the picture to its respective point in the 3D world.

The way to do such a mapping is using a technique called BackwardQuadrilateralTransformation. Could be
the name of something out of Star Trek :-)

But this sounds more difficult than it is. The idea of the algorithm is based on homogeneous transformation
and its math is described by Paul Heckbert in his
paper. Here is a link for the ones who like to read more on this: http://graphics.cs.cmu.edu/courses/15-
463/2008_fall/Papers/proj.pdf

Ready to enter the Matrix? Let's dive into the code!

First we'll need a class ABPoint to hold a vector:

x as integer
y as integer

Sub Constructor(x as integer, y as integer)
 me.x = x
 me.y = y
End Sub

Me make a module mPerspective that will hold the code to convert a picture from 2D to 3D space.

The main function is ABBackwardQuadrilateralTransformation. As parameters it takes the source picture, a
table containing the four destination corners in the '3D' space, if we want interpolation and what the
backcolor of the new picture should be.

The four destination points have to be added in a clockwise order. So P0 -> P1 -> P2 -> P3.
The interpolation parameter can be used so the transformation is more smooth, but it also means it takes
more time to do the conversion.

Function ABBackwardQuadrilateralTransformation(srcPic as picture,
destinationQuadrilateral() as ABPoint, useInterpolation as boolean, FillBackColor as
Color) As picture

I'll go a little more over some parts of this function. The full function can be found in the project at the end
of this article.

Getting the bounds of the rectangle. What it simply does is getting the 4 most ubound points within a group
of points. In our case we only have four of them but this function could find them even if you have a lot of
points.

 ...
 'get bounding rectangle of the quadrilateral
 GetBoundingRectangle destinationQuadrilateral, minXY, maxXY

 dim startX as integer = minXY.X
 dim startY as integer = minXY.Y
 dim stopX as integer = maxXY.X
 dim stopY as integer = maxXY.Y
 ...

Here is the function:

Private Sub GetBoundingRectangle(cloud() as ABPoint, byref minXY as ABPoint, byref
maxXY as ABPoint)
 dim minX as integer = 10e6
 dim maxX as integer = -10e6
 dim minY as integer = 10e6
 dim maxY as integer = -10e6

 dim i as integer
 for i = 0 to UBound(cloud)
 if cloud(i).x < minX then minX = cloud(i).x

 if cloud(i).x > maxX then maxX = cloud(i).x
 if cloud(i).y < minY then minY = cloud(i).y
 if cloud(i).y > maxY then maxY = cloud(i).y
 next

 minXY = new ABPoint(minX, minY)
 maxXY = new ABPoint(maxX, maxY)
End Sub

Next, we'll need to calculate the transformation matrix. This can be done with the MapQuadToQuad()
function and here is where the magic happens. You'll notice there are two functions named
MapQuadToQuad but one of them is just a help function for the other one.

The MapQuadToQuad() function will make our matrix given two rectangles. We also need some help
functions to multiply two 3x3 matrixes, to calculate the adjugate of a 3x3 matrix and one to calculate the
determinant of a 2x2 matrix.

If this sounds like gibberish to you, I'll suggest you google around and read some math tutorials. Don't
worry, It's all very basic.

 ...
 'calculate tranformation matrix
 dim srcRect(3) as ABPoint
 srcRect(0) = new ABPoint(0,0)
 srcRect(1) = new ABPoint(srcWidth -1 ,0)
 srcRect(2) = new ABPoint(srcWidth - 1, srcHeight - 1)
 srcRect(3) = new ABPoint(0, srcHeight - 1)
 dim matrix(2,2) as Double = MapQuadToQuad(destinationQuadrilateral, srcRect)
 ...

Here is are the functions:

Private Function MapQuadToQuad(input() as ABPoint, output() as ABPoint) As double(,)
 Dim squareToInput(2,2) as Double = MapQuadToQuad(input)
 Dim squareToOutput(2,2) as Double = MapQuadToQuad(output)

 Return MultiplyMatrix(squareToOutput, AdjugateMatrix(squareToInput))
End Function

Private Function MapQuadToQuad(Quad() as ABPoint) As double(,)
 dim sq(2,2) as double
 dim px, py as Double

 dim TOLERANCE as double = 1e-13

 px = quad(0).X - quad(1).X + quad(2).X - quad(3).X
 py = quad(0).Y - quad(1).Y + quad(2).Y - quad(3).Y

 if ((px < TOLERANCE) And (px > -TOLERANCE) And (py < TOLERANCE) And (
py > -TOLERANCE)) then
 sq(0, 0) = quad(1).X - quad(0).X
 sq(0, 1) = quad(2).X - quad(1).X
 sq(0, 2) = quad(0).X

 sq(1, 0) = quad(1).Y - quad(0).Y
 sq(1, 1) = quad(2).Y - quad(1).Y
 sq(1, 2) = quad(0).Y

 sq(2, 0) = 0.0
 sq(2, 1) = 0.0

 sq(2, 2) = 1.0
 else

 dim dx1, dx2, dy1, dy2, del as Double

 dx1 = quad(1).X - quad(2).X
 dx2 = quad(3).X - quad(2).X
 dy1 = quad(1).Y - quad(2).Y
 dy2 = quad(3).Y - quad(2).Y

 del = Det2(dx1, dx2, dy1, dy2)

 if (del = 0) then
 return sq
 end if

 sq(2, 0) = Det2(px, dx2, py, dy2) / del
 sq(2, 1) = Det2(dx1, px, dy1, py) / del
 sq(2, 2) = 1.0

 sq(0, 0) = quad(1).X - quad(0).X + sq(2, 0) * quad(1).X
 sq(0, 1) = quad(3).X - quad(0).X + sq(2, 1) * quad(3).X
 sq(0, 2) = quad(0).X

 sq(1, 0) = quad(1).Y - quad(0).Y + sq(2, 0) * quad(1).Y
 sq(1, 1) = quad(3).Y - quad(0).Y + sq(2, 1) * quad(3).Y
 sq(1, 2) = quad(0).Y
 end if

 return sq
End Function

Private Function MultiplyMatrix(a(,) as double, b(,) as double) As double(,)
 ' Multiply two 3x3 matrices
 dim c (2,2) as Double

 c(0, 0) = a(0, 0) * b(0, 0) + a(0, 1) * b(1, 0) + a(0, 2) * b(2, 0)
 c(0, 1) = a(0, 0) * b(0, 1) + a(0, 1) * b(1, 1) + a(0, 2) * b(2, 1)
 c(0, 2) = a(0, 0) * b(0, 2) + a(0, 1) * b(1, 2) + a(0, 2) * b(2, 2)
 c(1, 0) = a(1, 0) * b(0, 0) + a(1, 1) * b(1, 0) + a(1, 2) * b(2, 0)
 c(1, 1) = a(1, 0) * b(0, 1) + a(1, 1) * b(1, 1) + a(1, 2) * b(2, 1)
 c(1, 2) = a(1, 0) * b(0, 2) + a(1, 1) * b(1, 2) + a(1, 2) * b(2, 2)
 c(2, 0) = a(2, 0) * b(0, 0) + a(2, 1) * b(1, 0) + a(2, 2) * b(2, 0)
 c(2, 1) = a(2, 0) * b(0, 1) + a(2, 1) * b(1, 1) + a(2, 2) * b(2, 1)
 c(2, 2) = a(2, 0) * b(0, 2) + a(2, 1) * b(1, 2) + a(2, 2) * b(2, 2)

 return c
End Function

Private Function AdjugateMatrix(a(,) as double) As double(,)
 ' Calculates adjugate 3x3 matrix
 dim b(2,2) as double
 b(0, 0) = Det2(a(1, 1), a(1, 2), a(2, 1), a(2, 2))
 b(1, 0) = Det2(a(1, 2), a(1, 0), a(2, 2), a(2, 0))
 b(2, 0) = Det2(a(1, 0), a(1, 1), a(2, 0), a(2, 1))
 b(0, 1) = Det2(a(2, 1), a(2, 2), a(0, 1), a(0, 2))
 b(1, 1) = Det2(a(2, 2), a(2, 0), a(0, 2), a(0, 0))
 b(2, 1) = Det2(a(2, 0), a(2, 1), a(0, 0), a(0, 1))
 b(0, 2) = Det2(a(0, 1), a(0, 2), a(1, 1), a(1, 2))
 b(1, 2) = Det2(a(0, 2), a(0, 0), a(1, 2), a(1, 0))
 b(2, 2) = Det2(a(0, 0), a(0, 1), a(1, 0), a(1, 1))

 return b
End Function

Private Function Det2(a as double, b as double, c as double, d as double) As double
 ' Calculates determinant of a 2x2 matrix

 return (a * d - b * c)
End Function

Now we are ready to continue with our main function ABBackwardQuadrilateralTransformation() where we
will manipulate the picture.
I worked out the two systems: with and without interpolation.

Basically what it does is map every pixel from the source rectangle to the target rectangle using the matrix
we just created. When we use interpolation, we'll use the pixels around our pixel to calculate a new color
that is the mix of all those colors. This smooths the picture a little.

 dim x,y as integer

 dim factor, srcX, srcY as Double
 dim tgtPic as Picture
 tgtPic = NewPicture(srcWidth, srcHeight, 32)
 tgtPic.Graphics.ForeColor = FillBackColor
 tgtPic.Graphics.FillRect 0,0, srcWidth, srcHeight

 dim srcRGB, tgtRGB as RGBSurface
 srcRGB = srcPic.RGBSurface
 tgtRGB = tgtPic.RGBSurface

 if useInterpolation then
 Dim srcWidthM1 as integer = srcWidth - 1
 Dim srcHeightM1 as Integer = srcHeight - 1

 'coordinates of source points
 dim dx1, dy1, dx2, dy2 as Double
 dim sx1, sy1, sx2, sy2 as Integer

 ' temporary pixels
 dim p1,p2,p3, p4 as Color
 dim r, g , b as integer

 ' for each row
 for y = startY to stopY
 'for each pixel
 for x = startX to stopX
 factor = matrix(2, 0) * x + matrix(2, 1) * y + matrix(2, 2)
 srcX = (matrix(0, 0) * x + matrix(0, 1) * y + matrix(0, 2)) / factor
 srcY = (matrix(1, 0) * x + matrix(1, 1) * y + matrix(1, 2)) / factor
 if srcX >= 0 and srcY >= 0 and srcX< srcWidth and srcY < srcHeight then
 sx1 = srcX
 if sx1 = srcWidthM1 then
 sx2 = sx1
 else
 sx2 = sx1 + 1
 end if
 dx1 = srcX - sx1
 dx2 = 1.0 - dx1

 sy1 = srcY
 if sy1 = srcHeightM1 then
 sy2 = sy1
 else
 sy2 = sy1 + 1
 end if
 dy1 = srcY - sy1
 dy2 = 1.0 - dy1

 ' copy the pixel from the source to the target using interpolation of 4
points

 p1 = srcRGB.Pixel(sx1, sy1)
 p2 = srcRGB.Pixel(sx2, sy1)
 p3 = srcRGB.Pixel(sx1, sy2)
 p4 = srcRGB.Pixel(sx2, sy2)

 r = dy2 * (dx2 * (p1.red) + dx1 * (p2.red)) + dy1 * (dx2 * (p3.red)
+ dx1 * (p4.red))
 g = dy2 * (dx2 * (p1.green) + dx1 * (p2.green)) + dy1 * (dx2 * (
p3.green) + dx1 * (p4.green))
 b = dy2 * (dx2 * (p1.blue) + dx1 * (p2.blue)) + dy1 * (dx2 * (p3.blue
) + dx1 * (p4.blue))
 tgtRGB.Pixel(x,y) = RGB(r,g,b)
 end if
 next
 next
 else
 ' for each row
 for y = startY to stopY
 'for each pixel
 for x = startX to stopX
 factor = matrix(2, 0) * x + matrix(2, 1) * y + matrix(2, 2)
 srcX = (matrix(0, 0) * x + matrix(0, 1) * y + matrix(0, 2)) / factor
 srcY = (matrix(1, 0) * x + matrix(1, 1) * y + matrix(1, 2)) / factor
 if srcX >= 0 and srcY >= 0 and srcX< srcWidth and srcY < srcHeight then
 ' copy the pixel from the source to the target
 tgtRGB.Pixel(x,y) = srcRGB.Pixel(srcX, srcY)
 end if
 next
 next
 end if

 Return tgtPic

And we're done! In the project you can download I added a system so you can easily change the four '3D'
points and see the result of the transformation.

Until next time!

Click here to if you like my work

